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ON THE IDENTIFICATION 

LINEAR AND NONLINEAR STRUCTURAL SYSTEMS 

i 

Objective: 

the identification of linear and nonlinear mechanical systems 

subject to random excitation. 

The development of computational techniques for 

Summary: 

determine the differential equation governing the motion of 

linear and nonlinear structural systems subject to random 

excitation when the system excitation and response are observed. 

The objective of this effort is to yield the transfer functions, 

impedances and damping coefficients of linear systems as well 

as to determine the nonlinearities in the spring and damping 

coefficients governing the motion of nonlinear structures. 

Computational procedures have been suggested to 

In general the computational procedure employed for the 

identification of the unknown structure consists of three stages. 

The first is the generation of model reference hypotheses con- 

cerning the number of degrees of freedom of the system. 

second stage is one of parameter estimation in which the assumed 

model is fit to the observed data. 

of a verification of the validity of the assumed model. 

The 

The final stage consists 

It 

i 



therefore involves the statistical inference procedures of 

hypotheses testing. 

In the first quarterly progress report (1) a quasilineariza- 

tion--least squares--recursive smoothing procedure to accomplish 

the parameter estimation stage of the identification procedure 

computations was described. Theoretically this procedure is 

sufficiently general to accomplish the parameter estimation 

for both linear and nonlinear systems and preliminary computa- 

tion examples were illustrated. Difficulty in getting quasi- 

linear computational solutions to converge to a correct solution 

when the initial guess was excessively far from the correct 

solution was experienced. This difficulty motivated examina- 

tion of an alternate least squares identification procedure 

that is simpler to implement but is only suitable for the 

identification of linear systems subject to a zero mean random 

excitation. The theory underlying the least squares identifica- 

tion scheme for randomly excited linear systems was described 

in the last quarterly progress report (2). 

During the current quarterly interval, effort has continued 

to be concentrated on the linear system identification procedures. 

In the preceding report, (2), the identification of the 

parameters of an unknown linear dynamical system was reduced 

to the identification of the unknown parameters in a stochastic 

difference equation or autoregressive scheme [Equation (251,  

Section 3.2.21. In this report, the theory leading to the 

ii 
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autoregressive scheme representation of the unknown parameters 

of the linear dynamical system is briefly reviewed as are the 

statistical results on the estimation of the parameters and 

the determination of the order of autoregressive schemes. 

(The order, k, of the autoregressive model introduced is two 

times the number of degrees of freedom of the original, 

unknown continuous dynamic system.) A computational example 

illustrates some of the material discussed on the autoregressive 

scheme. It is anticipated that more extensive computational 

experiments on linear system identification will be conducted 

in the next quarterly interval and that the investigation 

of procedures for the identification of nonlinear systems 

will also be resumed. 
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1. INTRODUCTION 

The objective of the investigation is to develop a 

computational procedure for the identification of mechanical 

structures that are driven by a random excitation. In par- 

ticular, the structures can be conceived of as an arbitrary 

collection of lumped spring-mass-damper coefficients in the 

linear case, or by a polynomial description of the nonlineari- 

ties in the nonlinear case. 

The approach employed for the identification of the 

unknown structure consists of 3 stages. The first is the 

generation of hypotheses concerning the number of degrees of 

freedom of the system and the form of the nonlinearities. 

In effect, this prescribes a conceptual and computational 

model for the system. In the second stage, the observed 

data, corresponding to the excitation and response of the 

system, is used to determine parmeters o r  coefficients of 

the model assumed to represent the system. The final stage 

consists of a verification of the validity of the assumed 

computational model. This is to be accomplished by comparing 

the response of the system model to the response of the 

actual system. Subject to an "energy" response criterion, 

the assumed model is either accepted or an alternative model 

is assumed and computed on. In case of the latter alternative; 

the procedure is iterated, starting once again with stage 1. 
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In the first quarterly progress report (l), a quasi- 

linearization-least squares sequential estimation procedure, 

suitable for the identification of both linear and nonlinear 

systems was discussed and some computational examples were 

given. The approach may be thought of as the identification 

o f  an unknown system by comparison with a sequence of model 

reference conjectures. The quasilinearization procedure is 

suitable for deterministic (swept sine wave for example) 

and random excitation driving forces. 

In the second quarterly progress report (2), a least 

squares procedure f o r  the identification of linear time 

invariant systems under zero  mean random force excitation 

and regularly spaced observations was introduced. As a 

consequence, the problem of identifying the parameters of an 

unknown k/2 degree of freedom dynamical system was found to 

be equivalent to the problem of estimating the unknown parameters 

in a kth order autoregressive scheme. 

The asymptotic statistical properties of the autoregressive 

parameter estimation procedure have been demonstrated to be 

equivalent to the results in ordinary regression theory (Mann 

and Wald 1943, Reference (3)) and have been extensively 

studied and reported on since ( 4 , 5 ) .  

In this report we briefly review the mathematical basis 

for our linear system identification procedure and also the 

review of mathematical results associated with autoregressive 
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models (the estimation of the parameters and the determination 

of the order of the autoregressive scheme). 

The heuristic energy fit criterion suggested earlier to 

determine the suitability of the model assumed to fit to the 

unknown linear system is shown to be equivalent t o  the 

residual variance/observed power, statistic used to determine 

the order of an autoregressive scheme. 

A preliminary example of a least squares fit to an auto- 

regressive scheme is illustrated. It is anticipated that 

more extensive computational experiments on linear system 

identification will be conducted during the next quarterly 

interval, 
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x(t> sc 

2. ANALYSIS 

Unknown 
Linear 
Dynamic 
System 

< 

2.1 Objective 

Our objective is to describe a computational procedure 

which will permit identification of a continuous parametrically 

described unknown stationary linear dynamic system excited by 

white noise which is observed by a regular sampling process. 

The situation is depicted in Figure 1. 

FIGURE 1. The Identification Problem Considered 

The unknown system is assumed to be represented by 

the dynamic equations 

i(t) = A q(t) t b x ( t )  



A =  

. -  
0 

; b= 

' 0  
,, 1 
c . b  

2.1.2 

; c= 

In the matrix A, the parameters k,al, ... ak are unknown 

and in addition the time function x(t) is assumed to be a 

sample function of a white noise process. 

The system input x(t> and its response are regularly 

sampled over a finite time observation interval (for the 

purpose of digital computation) and consequently give rise 

to the observed time sequences x(n), y(n); n=1,2, ... m. 
Our requirement is that we estimate the unknown system 

parameters k,al, ... ak from the finite duration time series 

x(n> a y(n); n=1,2, ... m. From this knowledge we may com- 

pute the linear system transfer function, impedance, etc. 
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2 . 2  O u t l i n e  o f  t h e  Procedure  
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The r e g u l a r l y  sampled s y s t e m  (2.1.1) can  be e x p r e s s e d  

as t h e  d i s c r e t e  t i m e  sys tem 

where t h e  kxk m a t r i x  F and t h e  k x l  column v e c t o r  f a re  

f u n c t i o n s  of t h e  unknown s y s t e m  p a r a m e t e r s  k , a  l y . . . a k  and 

w(n) i s  a white n o i s e  sequence .  I n  t h e  p r e c e d i n g  p r o g r e s s  

r e p o r t  i t  was demonst ra ted  t h a t  i n  g e n e r a l  

F = exp ( T A )  ( 2 )  

where T i s  t h e  sampl ing  i n t e r v a l  and f i s  i n  g e n e r a l  a 

more compl i ca t ed  f u n c t i o n  o f  t h e  parameters a l ,  . . .  ak.  It 

s h o u l d  be n o t e d  t h a t  t h e  r e p r e s e n t a t i o n  i n  ( 2 )  i s  an  e q u i v a l e n t  

of ( 21.1) from t h e  p o i n t  of view of t h e  i d e n t i f i c a t i o n  

problem i n  t h e  s e n s e  t h a t  i t  exposes  t he  s y s t e m  p a r a m e t e r s  

s u f f i c i e n t l y  t o  p e r m i t  them t o  be es t imated? 

* T h i s  e q u i v a l e n c e  is  d i s t i n c t i v e l y  d i f f e r e n t  f rom t h a t  a c h i e v e d  
i n  t h e  more u s u a l  d i s c r e t e  r e p r e s e n t a t i o n  o f  con t inuous  l i n e a r  
s y s t e m s .  The l a t t e r  problem i s  w e l l  d i s c u s s e d  by  Blackman ( 6 ) ,  
t h e  fo rmer  problem i s  n o t  known t o  have been t r ea t ed  i n  t h e  
l i t e r a t u r e .  The d i s t i n c t i o n  between o u r  r e p r e s e n t a t i o n  and t h e  
more u s u a l  one i s  a consequence o f  t h e  f a c t  t h a t  t h e  u s u a l  t ime 
d i s c r e t e  r e p r e s e n t a t i o n  of  a con t inuous  t i m e  s y s t e m  or p r o c e s s  
i s  a n  approx ima t ion  and t h e  d i scre te  t i m e  se r ies  may b e  of  
a r b i t r a r y  o r d e r  depending  upon t h e  q u a l i t y  of t h e  approx ima t ion .  
The c h o i c e  of o u r  r e p r e s e n t a t i o n  (1) i s  m o t i v a t e d  by s e v e r a l  
r e s u l t s  i n  t h e  i d e n t i f i c a t i o n  o f  sampled data  s y s t e m s ,  (R.C.K. 
Lee ( 7 ) )  and t h e  f a c t  t ha t  t h e  white  n o i s e  s i g n a l  s o u r c e  can  
be employed. 



2.2.2 

The equivalence of (1) and (2.1.1) is reviewed in 

Section (2.3). 

In Section (2.4) it is demonstrated that the system (1) 

can be put into the form 

k k 

i=1 i=1 
y(n) = -ai y(n-i) t C Bi w(n-i); ( 3 )  

n = 1,2, ... m 

Equation ( 3 )  is in the form of a mixed autoregressive- 

moving average model, (Hannan [4]). The parameters {ai) 

and {Bi) are functions of the unknown system parameters 

{ai}. 

autocorrelated series, (n), where 

We replace the second series in ( 3 )  by an equivalent 

and are left with the kth order autoregressive model 

The unknown coefficients al, ... ak in the autoregressive 

model are estimated by a least squares procedure arid are 

subsequently transformed to the unknown system parameters 

al,. . .ak. 
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The following is a list of the analytic steps employed 

in the procedure and the corresponding sections in which they 

are discussed. 

(i) The equivalent continuous time and discrete time 
models (2.3). 

(ii) The transformation between the discrete time model 
and the autoregressive model (2.4). 

The transformation between the {ai) and the {ai} (5). (iii) 

(iv) The estimation of k,al, ... ak from the autoregressive 
model (2.6). 

Items (Ii) and (iv) follow respectively from adaptions 

from the work of R. C. K. Lee (7) and E. J. Hannan (4). 

Items (I) and (iii) are not known to have explicitly appeared 

before. 

In addition, the digital computer programs written to 

accomplish the estimation of the coefficients and some numerical 

results in the autoregressive model are discussed in Section (2.7). 
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2.3 The Equivalent Time Continuous and Time Discrete Models 

The regularly sampled versions of the continuous time 

system signals x(t) and y(t> (2.1.1) give rise to the dis- 

Crete time series x(n) and y(n) from which we wish to 

estimate the unknown continuous system parameters. The 

discrete versions of the input-output relationships of a 

linear time invariant system can be thought of either as a 

discrete time-time invariant system of equivalently as a 

mixed model moving average-autoregressive model. If o u r  

parametricized representation of the unknown continuous time 

system were represented as an autoregressive model we could 

employ the techniques of regression analysis to estimate the 

unknown coefficients in the autoregressive model and sub- 

sequently transform these back to the continuous system 

parameters. Hence we are motivated to seek an autoregressive 

model equivalent of the continuous time system. For simplicity, 

let's arbitrarily consider one which is the same orde r  as the 

number of state variables in the original unknown dynamic 

system. (The variable k, corresponding to k/2 d.odf. 

system.) Since the estimation of parameters in the auto- 

regressive model is a consequence of  the structure of the 

Covariance properties of the "system response", we examine 

the covariance properties of the k state time continuous 

and k state time discrete models.  
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t 

Consider the state variable representation of a linear 

dynamical system in the form (2.1.1) 

q(t) = A q(t) + b x(t); 

y(t) = c' q w .  (1) 

Our interest is in the covariance stationary properties 

of y(t) hence we consider the stationary or steady state 

solution 
t 

q(t) = 1 e ( t-A bx( x )dh 
-W 

Since E x(t) = 0; E q(t) = 0 and consequently the covariance 

matrix associated with the state variable q(t) is 

J O J O  



where 

'0 

and M is positive definite. Correspondingly, the covariance 

of y(t) is 

E y(t)y(t-r) = clefAMc ( 5 )  

which can be evaluated f o r  any matrix A .  

Now consider the kth order discrete time dynamic system 

where F, f and d are respectively kxk, kxl and kxl 

matrices and x(n), n=0,1,2 ... is a zero mean independent 
L 

gaussian distributed sequence with variance CY (a discrete 

version of x(t) 1. 

To determine the covariance E y(n)y(m), first con- 

sider the solution q(n). From ( 6 )  

= F2 q ( n )  + Ff x(n> + f x(n+l) 
( 7 )  

m-2 
q(n+m) = Fm q(n) + Fm-'f x(n) + F f x(n+l)+*--fx(n+m-l) 

k=o 



2.3.4 
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Considering only the steady state part of the solution 

we have that 
m-1 

k=o 
E q(n+l) qt(ntm) = E fx(n) C x(n+k)f'(F m-1-k) 

( 8 )  

m-1-k m-1 
= f c Ex(n)x(n+k)f'(F 1 

k=o 

Since E X(n> = 0; E x(n)x(n+k) = 0 f o r  k # 0. 

In ( 9 )  we used the symmetry property of the covariance 

matrix and the fact that the matrix ff' is also symmetric. 

Therefore 
E y(n)y(n+m) = d 1  (?)ff' d 

If we identify 

F = exp TA; mT = T 

ff' = M 

the covariance of the time discrete model (10) is identical 

at the lag points mT = T ,  m = O , l ,  ... to the covariance of 

the time continuous model, and this holds for arbitrary T. 

Now M can be explicitly determined f o r  any A and 

from M we could determine ff'. 
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We know t h a t  t he  t i m e  d i s c r e t e  s t a t e  v a r i a b l e  

model ( 6 )  can  be p u t  i n t o  t he  a u t o r e g r e s s i v e  form (see 

S e c t i o n  2 . 4 )  
k k 

i=1 i=1 
y ( n >  = C -ai y ( n - i )  + E B i  x ( n - i )  ( 1 2 )  

where t h e  ai are on ly  f u n c t i o n s  of  t h e  p a r a m e t e r s  i n  F. 

Also we can  wr i t e  ( 1 2 )  i n  t h e  form 

k 

i=l 
y ( n )  = c -ai y b i )  + n  ( n )  

where ~ ( n )  i s  a n  a u t o c o r r e l a t e d  se r ies  d e r i v e d  from t h e  

moving a v e r a g e  component i n  ( 1 3 ) .  

k 
u ( n )  = E B i  x ( n - i )  

i=l 

We c a n  employ a least s q u a r e s  parameter estimate t o  d e t e r m i n e  

t h e  ai ( see  S e c t i o n  2 . 6 ) .  Consequent ly  w e  conc lude  t h a t  

f rom t h e  p o i n t  of view of t h e  e s t i m a t i o n  of  t h e  unknown 

c o e f f i c i e n t s  i n  t h e  l i n e a r  dynamic s y s t e m  i n  (1) we c a n  employ 

t h e  model 

q ( n + l )  = F q(n) t f x ( n )  

y ( n )  = c q(n> 
(15)  

where F = exp TA, and f i s  a n  unknown kxl column v e c t o r .  
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2 . 4  The Transformation Between the Discrete Time and the 
Autoregressive Model 

In this section we demonstrate that the discrete time 

y(n) = c '  d n )  

I 

where F,f and d are respectively kxk, kxl and kxl 

matrices and x(n), n = O,l, ... 
gaussian distributed sequence, can be written in the form of 

a mixed autoregressive-moving average model 

i s  a zero mean independent 

where 

Under the nonsingular transformation 

s = B q ;  ( 3 )  

( i i j  

it can be shown by direct substitution, that (1) is transformed 

into the canonical form (see Quarterly Progress Report #2, 

Appendix, f o r  details of this demonstration). 
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s(n+l) = Q s(n) + d x(n) 

y ( n )  = c' s(n) 

where 

# =  I 

- -  
k-1 -U 

; c =  

-a 1 1 

; s(n)= 

( 5 )  

and d is some nxl column vector. 

That the canonical form (5),can be represented in the 

form (2) can also be demonstrated by direct substitution. 

From (5) 

and 
k 

i=1 
sk(n+l) = z -a k+l-i si(n) + bk x(n>. ( 8 )  

We observe that from ( 5 )  

y(n> = s,W ( 9 )  

Therefore we solve (7) for sj(n) in terms of s,(n+j-l) and 

obtain 



2.4.3 

k n ~- 

y(ntk-i) t C di x(n+k-i) 
i=l -a i y(n+k) = 

i=l 

k-1 3-1 

j=1  j i=l 
- a C bi x(kt(j-1)-i) 

In vector matrix form we have 
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Consequent ly  w e  have a c h i e v e d  our o b j e c t i v e  of w r i t i n g  (1) 

i n  t h e  form ( 2 ) .  

More s i m p l y  we can wr i te  ( 2 )  i n  the form 

where t h e  sequenc  p ( n )  i s  a c o r r e l a t e d  sequence .  

A l t e r n a t i v e l y  ( 1 4 )  and (1) can  b e  p u t  i n t o  t h e  form 

s ( n + l )  = Cp s ( n )  t b rl ( n )  

y ( n )  = c '  s ( n )  

where @ and c '  are  as d e f i n e d  i n  ( 6 )  and 

= i"] 
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2.5 On the Transformation Between the Autoregressive and the 
Continuous Time Models. 

Our concern here is with the transformation between 

the coefficients {a 1 in the canonical form, discrete time 

representation 
i 

where the matrices O,b and c are as defined in Section 2.4 

and the equivalent continuous time representation 

where the canonical form matrix A, and the vector b and 

c are as defined in Section 2 .  

The representation in (1) is derived from the repre- 

sentation 

q(n+l) = F q(n) t f x(n) 

y(n) = c' q(n> 
( 3 )  

where 
F = exp TA 

( 4 )  
4 = B F B - ~  
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Lemma 1% There exists a nonsingular transformation, T, 

such that 

where 

A =  

That is, A is a diagonal matrix consisting of the roots of 

the characteristic polynomial of a.  (All of the roots 

h l - * - h k  are assumed to be distinct.) 

Lemma 2. The characteristic polynomial for @ is 

+ an 
g ( x )  = hn + alh n-l + . .. 

Consequently once the (ai) are known the elements Xi of 

the matrix can be determined from (7). 

( 7 )  

Lemma 3. The nonsingular diagonal matrix A is similar to 

the matrix C in the sense 
C ~ = e  

"Well-known mathematical results will be identified as lemmas 
and quoted without proof. A sufficient reference for the 
results employed in this section is Chapter ( 3 1 ,  Coddington 
and Levenson (8). 



where 

c =  
:log -] 

Lemma 4. For  every matrix C and every matrix P 

- ePCP-1 peCp-l - 

We equate 
PCP” = TA (11) 

which is motivated by ( 4 ) ,  and use the identification in 

( 9 1 ,  the definition of (A) and lemmas (1) and (2) to get the 

characteristic polynomial 

f o r  the matrix TA. Since the roots vi i=1,2**=k are known 

from ( g ) ,  the parameters {ail are determined directly from (12). 

ak are obtained ... To summarize: The parameters al, 

in the following manner. 

using the autoregressive scheme. 
* ’ -  ak (1) Estimate al, 

(2) Form the characteristic polynomial 

‘k 
f ( A )  = h k  t alh k-l + . . .  

a 



a * *  h k  of fa(A) ( t h e  x 1 2  ( 3 )  Determine t h e  r o o t s  

e i g e n v a l u e s  of t h e  t ime d i s c r e t e  s y s t e m  (1)). 

( 4 )  Then the c h a r a c t e r i s t i c  po lynomia l  f o r  t h e  t i m e  

d i s c r e t e  system ( 2 )  r e v e a l i n g  t h e  con t inuous  system 

pci-ameters a ak i s  g i v e n  b y  1’ 

k 

i=l 
( 1 4 )  k k-1 + . . .  ak = II (v-log fa(d = 1-I + 
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2.6 Estimation in the Autoregressive Model 

In the preceding section it was demonstrated that hte 

identification of the unknown parameters of a k/2  d.0.f. linear 

dynamical system excited by white noise could be associated 

with the estimation of the unknown parameters of an autoregressive 

scheme of order k. In this section we review the theory 

associated with the estimation of the parameters of the white 

noise residual autoregressive scheme 

k 

i=1 
y(t) = c ai y(t-i) + e(t); t = k+l,.*.rn 

where e(t), t = 0 - + 1.0. is a zero mean independent, identically 

distributed gaussian sequence with variance u . The system 

1 s  assumed to be observed over the finite duration interval speci- 

fied by t = k + l , .  . .m. 

2 

For t = k + l ,  ... m (1) can be written as 

which is recognized to be in the least square parameter estima- 

tion form (see Quarterly Progress Report # 2 ) .  In matrix form 

( 2 )  is 
- - S,'a t em 

'm ( 3 )  



2.6.2 

where 

I 

sm' = 1: 
e =  m 

J 

( 4 )  

The normal e q u a t i o n s  f o r  t h e  e s t d n a t e ,  of t h e  

unknown pa rame te r  v e c t o r  a ( a f t e r  m o b s e r v a t i o n s  o f  y ( t )  ) i s  

= SmSm' Bm ( 5 )  'my, 

It i s  i n s t r u c t i v e  t o  examine ( 5 )  i n  component form. T h i s  i s  

g i v e n  by 



I Or 

I 
I 

where 

A 

R O  

> 
‘k-: 

A 

2.6.3 

A 

... RO,k-l 

... 

n 

. .  Rk-l,k-: 

m- k- 1 
= -  1 c y(i+r) y(i+s) r,s in-k-1 i=l R 

0. 

m a 

( 7 )  

and R is the estimator of t h e  covariance R(r-s) = 

E{Y(t-r)Y(t-s)) of the stationary process {Y(t), t = 0, f l,***)- 
r,s 

i 
I Following Hannan (4) and Anderson ( g ) ,  the estimators can 

~ 

i be seen to be asymptotically unbiased and normally distributed 

I with covariance matrix 

I where u k  A is the estimated residual variance given by I 

and where 
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It is interesting and useful to observe that by multi- 

plying (1) by y(t) and taking expectations we obtain 

R(0) = alR(l) + a 2 R ( 2 )  t 0 . .  akR(k) + Rey(0) (11) 

Since the random variable e(t) is assumed to be independent 

of the random variables e(t-l), e(t-2),**. it is certainly 

independent of y(t-1, y(t-2),.**. Therefore in (11) we can 

substitute 

(12) 2 
Rey(0) = Ree(O> = ' ee 

where IJ ee 

{e(t), t=O, - + 1,---) . Since it is known (4) that the sample 

covariance matrix in (8) converges in probability to the true 

covariance matrix, for m large the residual variance ( 9 )  

is an explanation of the extent to which the hypothesized model 

accounts for the observed power, R ( O ) ,  where R ( 0 )  = Ey(t) y(t) . 
Consequently as k increases, the residual variance approaches 

the constant u ee, 

is the average "power" of the input process, 

, ,  

A 

the input power. 2 

Returning our attention to equations (1) - ( 8 ) ,  for a 

given data set and m sufficiently large, one could determine 

a confidence region f o r  the estimates Gi. Rather than pursue 

t h i s  point extensively, we no te  that t h e  diagonal terms of the 

matrhx in (8) designate the variance of t h e  e s t i m a t e  o f  t h e  corres- 

pending estimate a .j. When t h e  square soot of each of these 
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terms is significantly smaller than the estimate of ai, the 

true value of ai 

any reasonable confidence coefficient. 

will well be in a region corresponding to 

In conjunction with the large sample procedure suggested 

t o  estimate the autoregressive coefficients, we wish to explore 

procedures to determine, k, the order of the hypothesized 

autoregressive model. Several alternatives are available for 

this purpose. One heuristic approach is to compute the residual 

variance statistic ( 9 )  for successive values of k. 

That is, a simple practical hypothesis test is to compute 

the correlation matrix and the estimates 

order 

The estimate of k is sufficient if for no greater value of 

k is the residual variance, ak  A , significantly decreased. 

Observe that this heuristic approach is an implicit application 

ai for as high an 

k of regressive scheme that we are willing to consider. 

of the inspection scheme earlier. That is, the estimate of 

k suggested is the largest number k for which 

There are a number of more formal alternatives available 

to test the order of the autoregressive model. Closely related 

is the test statistic 
,2 

A = L I a  
- 2  
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which is used to distinguish between the hypotheses 

Ho ; k = p+q (15) 

and 

H1 ; k = p. 

Whittle (10) and Anderson ( 9 )  have demonstrated that the related 

quantity $2*  is distributed, 

q degrees of freedom, under the hypothesis H o ,  where 

i.e., chi-squared with 2 
xq ’ 

Similarly, hypothesis tests based on a statistic other 

than (14) (using partial and multiple correlation coefficients 

as well as spectral estimates) have been analyzed to determine 

the order of an autoregressive scheme. 

references by Hannan, Whittle, and Anderson (4), ( 5 ) ,  ( 6 ) ,  (10) 

provide sufficient reference and a bibliography for this topic. 

At this point the 

*The test statistic $2 is in t h e  same form as the energy fit 
criterion suggestion in (2). It is in the form 
$ = ‘k A 2 / i ( 0 ) ,  where ak  A and i ( 0 )  are defined in (71 ,  
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2.7 An Example 

As a test of our computation programs and as an illustra- 

tion of some of the material in this section we have considered 

the Kendall (11) autoregressive scheme 

y(t) = 1.1 y(t-1) - 0.5 y(t-2) + Q(t) (1) 

A series of 100 gaussian independent unit variance samples was 

generated to correspond to the quantity Q(t) in (I). The 

recursive relationship in (1) was used to generate the sequence 

{y(t)>. From the {y(t)} we compute the appropriate correla- 

tion function estimates and the corresponding normal equations 

appear in the form 

Equivalently we can write 
- 
A 

R0,O 

R1,O 
n 

- 

- -  
n 

-OL2 

A 

-OL1 
- -  



2 .7 .2  

Corresponding to the tabulated computer results in the pages 

immediately following, the solution of (2) gives the results 

a True a Estimated 

1 . 1 0 0  0.9898 
-0 .500 -0 .4720 

( 4 )  

with the normalized covariance (correlation coefficient) matrix, 

0.675 

1.005 
( 5 )  

Additional computations for this example for larger values 

of m and for k = l  as well as for higher order systems are in 

progress. 
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